Mass Storage System Reference Model:
Version 4 (May, 1990)

Developed by the IEEE Technical Committee on Mass
Storage Systems and Technology

Edited by: Sam Coleman
Lawrence Livermore National Laboratory

Steve Miller
SRI International

All rights reserved by the Technical Committee on Mass Storage Systems and Technology,
Institute of Electrical and Electronics Engineers, Inc.

This is an unapproved draft subject to change and cannot be presumed to reflect the position of the
Institute of Electrical and Electronics Engineers, Inc.

ii Mass Storage System Reference Model:

Mass Storage System Reference Model:
Version 4 (May, 1990)

Contents Page
L. PIEIACE i 1
O R I -V K] o =Y =Y o o =T 2

A = =T U £=T o 1= | £ 3

2. INErOAUCTION. .o 5
2 R = 7= T (o | o 11] o o S 5

2.2 MOBIVALION coce e 9

2.3 Reference Model ArchiteCture. ... 10

2.3.1 ADSIract ODJECIS.....uuvii i 10

2.3.2 Client/Server PropertieS...ccciiiiiiiii e e ee e eaeaens 10

2.3.3 Reference Model ModUIES ... 11

3. Detailed Description of the Reference Modelooovvviiiiiiiiii e 15
3.1 Bitfile CHENt ..o 15

G N\ =0 ([T] oY TP RPPPPTTN 16

3.3 Bitfile SeIVeI .o 17

3.3.1 Bitfile Server ComMmMaNndS.........c.cuuuiiiiiiiiiiiiiiiiiiae e 18

3.3.2 Bitfile ReqUESt ProCESSOrccccvviieiiiiii e 19

3.3.3 Bitfile Descriptor Manager and Descriptor Table........................ 20

3.3.4 Bitfile ID Authenticator...........ccccciiiiiiiiiiiiiiie 21

3.3.5 Migration Manager..........uuuiiieeiiiiiiiiieeeeiiiie e e e e e e e e e e e eeanenns 21

3.3.6 Space Limit MANAger......ccccoeveiiiiiiiiiieee e e e e e e 22

3.4 SEOTAQGE SEIVEL i 22

3.4.1 Physical Storage SYStemM.......ccoovviiiiiiiiii e 22

3.4.2 Physical Device Managerccccvuuviiiiiiieeeeeeeeeiiee e e 23

3.4.3 Logical-to-Physical Volume Manager........ccccoooevveviiiieeviiiineenennnnn, 24

3.5 Physical Volume REPOSITOIYuvuiiiieiiiiiiie e e e eeeeans 25

3.6 COMMUNICALION SEIVICE....cciii it s 28

I A1 (= Y/ T g T Vo 1= SRS 29

3.7.1 Storage ManagemeNnt..........ocieuuiiiuiieieiei et 30

3.7.1.1 REQUIFEMENTSiieiieeiiiie i e eeeeeeiee e e e e e e e e e e aeaees 30

3.7.1.2 TOOISNEEUEM........uciiieeeiieeiiiie e e 30

I A @ 1 1= - 1o [P 31

3.7.2.1 REQUIFEMENTSuiieiieiiiiie i e eeee et e e e e e eeais e e aeaaes 31

3.7.2.2 TOOISNEEUEM.........ciiieeiiieeiiie e e e 31

3.7.3 Systems MaiNtENANCEuuvuuiiiiiieieeeieieiiie e e e 31

3.7.3.1 REQUIFEMENTSuiiiiiiiiiiie e eeee e e e e e e eeare e e aeaees 31

3.7.3.2 TOOISNEEUEM........uciiieeeieeeiiie e e e 31

3.7.4 SOftWAre SUPPOIT ..uuiiiiii it e e e e e e e e eenen 32

3.7.4.1 REQUIFEMENTSiieiiiiiiie i e eeee et e e e e e e eeaian e e aeaees 32

3.7.4.2 TOOISNEEUEM.........ciiieeeieeeiice et e e 32

3.7.5 Hardware SUPPOI.....coouiii i e e e e e e 32

3.7.5.1 REQUIFEMENTSieiiieiiiiie i eeeeetee e e e e e e e eeees 32

3.7.5.2 TOOISNEEUEM.........iiieeeiieiiee e e 32

3.7.6 Administrative Control............cooiiiiiiiiiiieee e 33

3.7.6.1 REQUIFEMENTS ..ouuuiiiiiieiii e 33

3.7.6.2 TOOISNEEUEd.........uiiiiiiiiiieii e 33

B L= (=] (=] o101 PP 34

LT €1 (01T 1 Y PP 37

Version 4 (May, 1990)

1. Preface

The purpose of this reference model is to
identify the high-level abstractions that
underlie modern storage systems. The in-
formation to generate the model was col-
lected from major practitioners who have
built and operated large storage facilities,
and represents a distillation of the wisdom
they have acquired over the years. The
model provides a common terminology and
set of concepts to allow existing systems to
be examined and new systems to be discussed
and built. 1t is intended that the model and
the interfaces identified from it will allow
and encourage vendors to develop mutually-
compatible storage components that can be
combined to form integrated storage systems
and services.

The reference model presents an abstract
view of the concepts and organization of
storage systems. From this abstraction will
come the identification of the interfaces and
modules that will be used in IEEE storage
system standards. The model is not yet
suitable as a standard; it does not contain
implementation decisions, such as how ab-
stract objects should be broken up into
software modules or how software modules
should be mapped to hosts; it does not give
policy specifications, such as when files
should be migrated; does not describe how
the abstract objects should be used or
connected; and does not refer to specific
hardware components. In particular, it does
not fully specify the interfaces.

A storage system is the portion of a com-
puting facility responsible for the long-
term storage of large amounts of informa-
tion. It is usually viewed as a shared facility
and has traditionally been organized around
specialized hardware devices. It usually
contains a variety of storage media that
offer arange of tradeoffs among cost, per-
formance, reliability, density, and power
requirements. The storage system includes
the hardware devices for storing informa-
tion, the communication media for trans-
ferring information, and the software

modules for controlling the hardware and
managing the storage.

The size and complexity of this software is
often overlooked, and its importance is
growing as computing systems become
larger and more complex. Large storage
facilities tend to grow over a period of years
and, as a result, must accommodate a col-
lection of heterogeneous equipment from a
variety of vendors. Modern computing fa-
cilities are putting increasing demands on
their storage facilities. Often, large num-
bers of workstations as well as specialized
computing machines such as mainframes,
mini-supercomputers, and supercomputers
are attached to the storage system by a
communication network. These computing
facilities are able to generate both large
numbers of files and large files, and the
requirements for transferring information
to and from the storage system often
overwhelms the networks.

The type of environment described above is
the one that places the greatest strain on a
storage system design, and the one that most
needs a storage system. The abstractions in
the reference model were selected to ac-
commodate this type of environment. While
they are also suitable for simpler envi-
ronments, their desirability is perhaps best
appreciated when viewed from the per-
spective of the most complicated envi-
ronment.

There is a spectrum of system architec-
tures, from storage services being supplied
as single nodes specializing in long-term
storage to what is referred to as “fully
distributed systems”. The steps in this
spectrum are most easily distinguished by
the transparencies that they provide, where
they are provided in the site configuration,
and whether they are provided by a site
administrator or by system management
software. The trend toward distributed sys-
tems is appealing because it allows all
storage to be viewed in the same way, as
part of a single, large, transparent storage

space that can be globally optimized. This is
especially important as systems grow more
complex and better use of storage is re-
quired to achieve satisfactory performance
levels. Distributed systems also tend to
break the dependence on single, powerful
storage processors and may increase
availability by reducing reliance on single
nodes.

1.1 Transparencies

Many aspects of a distributed system are
irrelevant to a user of the system. As a
result, it is often desirable to hide these
details from the user and provide a higher-
level abstraction of the system. Hiding de-
tails of system operation or behavior from
users is known as providing transparency
for those details. Providing transparency
has the effect of reducing the complexity of
interacting with the system and thereby
improving the dependability, maintain-
ability, and usability of applications.
Transparency also makes it possible to
change the underlying system because the
hidden details will not be embedded in ap-
plication programs or operating practices.

The disadvantage of using transparency is
that some efficiency can be lost in resource
usage or performance. This occurs because
the mechanism that provides the trans-
parency masks semantic information and
causes the system to be used conservatively.
High-performance data base systems, for
example, may need to organize disk storage
directly and schedule disk operations to gain
performance, rather than depend on lower-
level file systems with their own structure,
scheduling, and policies for caching and
migration.

There is a range of support that can be
provided for distributed systems in a
computer network. A system with few
transparencies is often called a networked
system. The simplest kind of networked
system provides utilities to allow a program
to be started on a specified host and infor-
mation to be transferred between specified
storage devices. Examples include TELNET
and FTP, respectively. This type of system
rarely provides support for heterogeneity.
At the other end of the spectrum are fully
distributed systems that provide many

Mass Storage System Reference Model:

transparencies. An example is LOCUS. In
distributed systems, a goal is for worksta-
tions to appear to have unlimited storage and
processing capacities.

System and application designers must think
carefully about what transparencies will be
provided and whether they will be manda-
tory. It is possible for applications to
provide certain transparencies and not
others. Fundamental transparencies can be
implemented by the system, saving each
user from re-implementing them. A
common implementation will also improve
the likelihood that the transparency will be
implemented efficiently.

The common transparencies are:

Access
Clients do not know if objects or services
are local or remote.

Concurrency
Clients are not aware that other clients
are using services concurrently.

Data representation
Clients are not aware that different data
representations are used in different
parts of the system.

Execution
Programs can execute in any location
without being changed.

Fault
Clients are not aware that certain faults
have occurred.

Identity
Services do not make use of the identity of
their clients.

Location
Clients do not know where objects or
services are located.

Migration
Clients are not aware that services have
moved.

Naming
Objects have globally unique names which
are independent of resource and accessor
location.

Version 4 (May, 1990)

Performance
Clients see the same performance re-
gardless of the location of objects and
services (this is not always achievable
unless the user is willing to slow down
local performance).

Replication
Clients do not know if objects or services
are replicated, and services do not know
if clients are replicated.

Semantic
The behavior of operations is independent
of the location of operands and the type of
failures that occur.

Syntactic
Clients use the same operations and pa-
rameters to access local and remote ob-
jects and services.

Some of the transparencies overlap or in-
clude others.

With this in mind, it is incumbent upon the
Storage System Standards Working Group to
identify interfaces and modules that are
invariant from single storage nodes to fully
distributed systems. Many sites are not
likely to embrace fully distributed systems
in a single step. Rather, they are likely to
evolve gradually as growing system size and
complexity dictate and as vendors make
available products supporting fully dis-
tributed systems.

1.2 Requirements

Modern computing facilities are large and
complex. They contain a diverse collection of
hardware connected by communication
networks, and are used by a wide variety of
users with a spectrum of often-conflicting
requirements. The hardware includes a
range of processors from personal com-
puters and workstations to mainframes and
supercomputers, and many types of storage
devices such as magnetic disks, optical
disks, and magnetic tapes. This equipment is
typically supplied by a variety of vendors
and, as a result, is usually heterogeneous.
Both the hardware characteristics and the
user requirements make this type of facility
extremely complicated.

To insure that the reference model applies
to many computer environments, the |EEE
Technical Committee on Mass Storage
Systems and Technology identified the fol-
lowing requirements:

e« The model should support both cen-
tralized and distributed hierarchical,
multi-media file systems.

« The model should support the simplest
randomly addressable file abstraction
out of which higher level file struc-
tures can be created (e.g., a segment of
bits or bytes and a header of at-
tributes).

« Where the defined services are ap-
propriate, the model should use na-
tional or international standard pro-
tocols and interfaces, or subsets
thereof.

* The model should be modular such that
it meets the following needs:

- The modules should make sense to
produce commercially.

- It should be reasonable to integrate
modules from two or more vendors.

- The modules should integrate with
each other and existing operating
systems (centralized and dis-
tributed), singly or together.

- It should be possible to build hier-
archical centralized or distributed
systems from the standard modules.
The hierarchy might include, for
example, solid state disks, rotating
disks (local and remote), an on-line
library of archival tape cartridges
or optical disks, and an off-line,
manually-operated archival vault.

- Module interfaces should remain the
same even though implementations
may be replaced and upgraded over
time.

- Modules should have standardized
interfaces hiding implementation
details. Access to module objects
should only be through these inter-
faces. Interfaces should be specified

by the abstract object data struc-
tures visible at those interfaces.

- Module interfaces should be media
independent.

File operations and parameters should
meet the following requirements:

- Accessto local and remote resources
should use the same operations and
parameters.

- Behavior of an operation should be
independent of operand location.

- Performance should be as indepen-
dent of location as possible.

- It should be possible to read and
write both whole files and arbi-
trary-sized, randomly-accessible
pieces of files.

- The model should separate policy and
mechanism such that it supports
standard as well as vendor- or site-
specific policy submodules and in -
terfaces for access control, ac-
counting, allocation, site manage-
ment, security, and migration.

- The model should provide for de-
bugging, diagnostics, and mainte-
nance.

- The model should support a re-
guest/reply (transaction) oriented
communication model.

- Request and data communication
associations should be separated to
support high speed direct source to
destination data channels.

- Transformation services (e.g.
translation, check summing, en-
cryption) should be supported.

The model should meet the following
naming requirements:

- Objects should have globally unique,
machine-oriented names which are
independent of resource and access
location.

Mass Storage System Reference Model:

- [Each operating system or site en-
vironment may have a different
human-oriented naming system,
therefore human- and machine-
oriented naming should be clearly
separated.

- Globally unique, distributively
generated, opaque file identifiers
should be used at the client-to-
storage-system interface.

The model should support the following
protection mechanism requirements:

- System security mechanisms should
assume mutual suspicion between
nodes and networks.

- Mechanism should exist to establish
access rights independent of location.

- Access list, capability or other site,
vendor, or operating system specific
access control should be supportable.

- Security or privacy labels should
exist for all objects.

The model should support appropriate
lock types for concurrent file access.

Lock mechanisms for automatic mi-
gration and caching (i.e., multiple
copies of the same data or files) should
be provided.

The model should provide mechanisms
to aid recovery from network, client,
server crashes and protection against
network or interface errors. In par-
ticular, except for file locks, the file
server should be stateless (e.g., no
state maintained between “open” and
“close” calls).

The model should support the concept of
fixed and removable logical volumes as
separate abstractions from physical
volumes.

It should be possible to store one or
many logical volumes on a physical
volume, and one logical volume should
be able to span multiple physical vol-
umes.

Version 4 (May, 1990)

2. Introduction

2.1 Background

From the early days of computers,
“storage” has been used to refer to the
levels of storage outside the central pro-
cessor. If “memory” is differentiated to be
inside the central processor and “storage”
to be outside, (i.e., requiring an input-
output channel to access), the first level of
storage is called “primary storage”
(Grossman 89). The predominant tech-
nology for this level of storage has been
magnetic disk, or solid-state memory con-
figured to emulate magnetic disks, and will
remain so for the foreseeable future in
virtually every size of computer system
from personal computers to supercom-
puters. Magnetic disks connected directly to
I/O channels are often called “local” disks
while magnetic disks accessed through a
network are referred to as “remote” or
“central” disks. Sometimes a solid-state
cache is interposed between the main
memory and primary storage. Because
networks have altered the access to primary
storage we will use the terms “local stor-
age” and “remote storage” to differentiate
the different roles of disks.

The next level of data storage is often a
magnetic tape library. Magnetic tape has
also played several roles:

e On-line archive known as “long term
storage” (e.g., less active storage than
magnetic disk),

« off-line archival storage (possibly off-
site),

« backup for critical files, and

e as an I/O medium (transfer to and from
other systems).

Magnetic tape has been used in these roles
because it has enjoyed the lowest cost-per-
bit of any of the widely used technologies. As
an 1/0 medium, magnetic tape must conform
to standards such that the tape can be

written on one system and read on another.
This is not necessarily true for archival or
backup storage roles, where nonstandard
tape sizes and formats can be used, even
though there are potential disadvantages if
standards are not used even for these pur-
poses.

In the early 1970s nearly every major
computer vendor, a number of new com-
panies, and vendors not otherwise in the
computer business, developed some type of
large peripheral storage device. Burroughs
and Bryant experimented with spindles of
4-ft diameter magnetic disks. Control Data
experimented with 12 in. wide magnetic
tape wrapped nearly all the way around a
drum with a head per track. The tape was
moved to an indexed location and stopped
while the drum rotated for operation.
(Davis 82 presents an interesting com-
parison of devices that actually got to the
marketplace.)

Examples of early storage systems are the
Ampex Terabit Memory (TBM) (Wildmann
75), IBM 1360 Photostore (Kuehler 66),
Braegan Automated Tape Library, IBM 3850
Mass Storage System (Harris 75, Johnson
75), Fujitsu M861, and the Control Data
38500. One of the earliest systems to em-
ploy these devices was the Department of
Defense Tablon system (Gentile 71), which
made use of both the Ampex TBM and the
IBM Photostore. Much was learned about the
software requirements from this installa-
tion.

The IBM 1360, first delivered in the late
1960s, used write-once, read-many
(WORM) chips of photographic film. Each
chip measured 1.4 x 2.8 in. and stored 5
megabits of data. “File modules” were
formed of either 2250 or 4500 cells of 32
chips each. The entire process of writing a
chip, photographically developing it, in-
serting the chip in a cell, and a cell in afile
module, storing and retrieving for read,
etc., was managed by a control processor
similar to an IBM 1800. The complex

chemical and mechanical processing re-
quired considerable maintenance expertise
and, while the Photostore almost never lost
data, the maintenance cost was largely re -
sponsible for its retirement. A terabit sys-
tem could retrieve afile in under 10 sec-
onds.

The TBM, first delivered in 1971, was a
magnetic tape drive that used 2-inch-wide
magnetic tape in large 25,000-foot reels.
Each reel of tape had a capacity of 44 giga-
bits and a file could be retrieved, on the
average, in under 17 seconds. With two
drives per module, a ten module (plus two
control modules) system provided a terabit
of storage. The drive was a digital re-
engineering of broadcast video technology.
The drive connected to a channel through a
controller, and cataloging was the respon-
sibility of the host system.

The Braegan Automated Tape Library was
first delivered in the mid 1970s and con-
sisted of special shelf storage housing
several thousand half-inch magnetic tape
reels, a robotic mechanism for moving reels
between shelf storage and self-threading
tape drives, and a control processor. This
conceptually simple system was originally
developed by Xytecs, sold to Calcomp, and
then to Braegan. In late 1986, the produc-
tion rights were acquired by Digital Storage
Systems, Longmont, Colorado. Sizes vary,
but up to 8,000 tape reels (9.6 terabits)
and 12 tape drives per cabinet are fairly
common.

The IBM 3850 (Johnson 75, Harris 75)
used a cartridge with a 2.7-inch-wide,
770-in. long magnetic tape. A robotic car-
tridge handler moved cartridges between
their physical storage location (sometimes
called the honeycomb wall) and read/write
devices. Data accessed by the host was staged
to magnetic disk for host access. De-staging
the changed pages (about 2 megabits) oc-
curred when those pages became the least
recently used pages on the staging disks.
Staging disks consisted of a few real disk
devices, which served as buffers to the en-
tire tape cartridge library. The real disks
were divided into pages and used to make up
many virtual disk devices that could appear
to be on-line at any given time.

Mass Storage System Reference Model:

Manufactured by Fujitsu and marketed in
this country by MASSTOR and Control Data,
the M861 storage module uses the same data
cartridge as the IBM 3850; however, it is
formatted to hold 175 megabytes per car-
tridge. The M861 holds up to 316 car-
tridges and provides unit capacity of 0.44
terabits. The physical cartridges are stored
on the periphery of a cylinder, where a
robotic mechanism picks them for the read-
write station. The unit achieves about 1 2 -
second access time and 500
mounts/dismounts per hour.

A spectrum of interconnection mechanisms
was described (Howie 75) that included:

¢ The host being entirely responsible for
special hardware characteristics of the
storage system device,

« the device characteristics being
translated (by emulation in the storage
system) to a device known by the host
operating system, and

e the storage system and host software
being combined to create a general sys-
tem.

This has sometimes been termed moving
from tightly coupled to loosely coupled sys-
tems. Loosely coupled systems use message
passing between autonomous elements.

The evolution of the architectural view of
what constitutes a large storage system has
been shaped by the growth in shear size of
systems, more rapid growth of interactive
rather than batch processing, the growth of
networks, distributed computing, and the
growth of personal computers, worksta-
tions, and file servers.

Many commercial systems have tracked
growth rates of 60-100% per year over
many years. As systems grow, a number of
things change just because of size. It be-
comes difficult for large numbers of people
to handle tape reels, so automating the
fetching and returning and the mounting and
dismounting of reels becomes important. As
size increases, it also becomes more diffi-
cult for humans to decide which devices to
use for load balancing.

Version 4 (May, 1990)

Because of this growth, early users of
storage systems were forced to do much of
the systems integration in their own site
environments. Large portions (software and
hardware) of many existing systems
(Gentile 71, Penny 73, Fletcher 75,
Collins 82, Coleman 84) were developed by
user organizations that were faced with the
problem of storing, retrieving, and
managing trillions of bits and cataloging
millions of files. The sheer size of such
storage problems meant that only organi-
zations such as government laboratories,
which possessed sufficient systems engi-
neering resources and talent to complete the
integration, initially took on the develop-
ment task. These individualized develop-
ments and integrations resulted in storage
systems that were heavily intertwined with
other elements of each unique site.

These systems initiated an evolution in
storage products in which three stages are
readily recognizable today. During the first
stage, a storage system was viewed as a very
large peripheral device serving a single
system attached to an 1/O channel on a
central processor in the same manner as
other peripheral devices. Tasks to catalog
the files and free space of the device, manage
the flow of data to and from it, take care of
backup and recovery, and the many other
file management tasks, were added as ap-
plication programs within the systems
environment. Many decisions, such as when
to migrate a file, were left to the user or to
a manual operator. If data was moved from
the storage system to local disk, two host
channels (one for each device) were re-
quired plus a significant amount of main
memory space and central processing ca-
pability (Davis 82).

During this stage, the primary effort in
design was machine-room automation to
reduce the need to manually mount and
dismount magnetic tapes.

The second stage (late 1970s to present)
has been characterized by centralized
shared service that takes advantage of the
economies of scale and provides file server
nodes to serve several, perhaps heteroge-
neous, systems (Svobodova 84).

This stage of the storage system evolution is
the one that is most prevalent today. The

storage system node entails using a control
processor to perform the functions of the
reference model in a storage hierarchy
(O'Lear 82). The cost of the storage system
makes it desirable to share these centralized
facilities among several computational sys-
tems rather than provide a storage system
for each computational system. This is
especially true when supercomputers be-
come a part of the site configuration.

This approach to providing storage has
several advantages:

e The number of processors that have
access to a file is larger than that which
can share a peripheral device. (This
type of access is not the same as sharing
a file, which implies concurrent ac-
cess.)

e Multiple read-only copies of data can be
provided, circumventing the need for a
large number of processors having
access to common storage devices.

* Processors of different architectures
can have access to common storage, and
therefore to common data, if they are
attached to a network and use a common
protocol for bit-stream transfer.

e The independence between the levels of
storage allows the inclusion of new
storage devices as they become com-
mercially available.

Some of the earliest systems in this shared
service stage were at the Lawrence Berkeley
National Laboratory (Penny 70) and
Lawrence Livermore National Laboratory
(LLNL) (Fletcher 75, Watson 80).

The Los Alamos Common File System
(Collins 82, McLarty 84) and the system at
the National Center for Atmospheric
Research (Nelson 87, O'Lear 82) are more
recent examples of shared, centralized
storage system nodes.

The third stage is the emerging distributed
system. An essential feature of a distributed
system (Enslow 78, Watson 8la, 84, 88)
is that the network nodes are autonomous,
employing cooperative communication with
other nodes on the network. The control

processors of storage systems developed
during this stage provide this capability.

The view of a storage system as a distributed
storage hierarchy is neither a device nor a
single service node, but is the integration of
distributed computing systems and storage
system architectures with the elements that
provide the storage service distributed
throughout the system. The distributed
computing community has been very in-
terested in the problems of providing file
management services, albeit generally on
smaller systems (Almes 85, Birrell 82,
Brownbridge 82, Donnelley 80, Leach 82,
Svobodova 84, Watson 8la). Probably the
best known example at the workstation level
is the SUN Microsystems “network file
server” (Sandberg 85).

Several elements are necessary for a system
to be classed as “distributed” (Enslow 78):

« A multiplicity of general-purpose
resource elements,

« the distribution of these elements,
logically and physically,

» a distributed (network) operating sys-
tem,

« system transparency (service requests
by name only), and

e cooperative communication among
elements (nodes).

Achieving all of these elements sounds dif-
ficult and expensive. The motivations most
often cited are extensibility, availability,
and costly resource sharing (LeLann 81).
Readily extensible systems permit the “hot
wiring” necessary in large systems that can
no longer afford downtime for cabling in
new elements. Extensibility also means that
individual elements can be upgraded without
disrupting the entire system. System
availability is obtained by replicating sys-
tem elements in a way that permits graceful
degradation. Sharing costly elements occurs
through communications and networking.

The issues involved in designing distributed
systems with the characteristics outlined
above were discussed by Dr. Richard W.
Watson of the Lawrence Livermore National

Mass Storage System Reference Model:

Laboratory at the Eighth IEEE Mass Storage
Symposium in Tucson, Arizona, May 1987.
He stated (Watson 87) that the long-range
goal is to design systems in which
“mainframes, minicomputers, worksta-
tions, networks, multiple levels of storage,
and input/output systems are viewed as
elements of a logically single distributed
computer whose resources are managed by
and accessed through a single distributed
operating system.”

Individual operating systems have their own
way of handling files. One reason for re -
quiring a distributed operating system is to
provide a single logical file and naming
system. This distributed file system should
be accessed by name only; that is, the
naming and heterogeneous features of dif-
ferent component parts should be trans-
parent to the user. Logically, the the dis-
tributed storage system should have infinite
capacity and unlimited file size. This is
obtained through the use of migration among
the distributed storage elements that make
up the storage hierarchy. The different
levels of storage probably have different
storage characteristics and costs.

Other design goals include high reliability
and availability, high performance (low
delay and high throughput), mandatory and
discretionary access control, file sharing
and safe concurrent access (Lantz 85), and
accounting and administrative controls
(Mullender 84).

It now appears that an attainable goal is to
design interconnected systems, whose
subsystems can be produced by a number of
vendors, such that the file service is uni-
form from the user's local level through all
levels of the on-line hierarchy to shelf
storage. Internally, the distributed hier-
archical storage system will consist of
multiple levels of storage such as bulk
semiconductor memories, magnetic disks,
magnetic tape, optical disks, automated
media libraries, and manual vaults. Such a
system is currently under development at
Lawrence Livermore National Laboratory
(Coleman 84, Foglesong 90, Gary 90, Hogan
90).

Version 4 (May, 1990)

2.2 Motivation

The central architectural features of the
reference model and the motivation for them
can be summarized as follows:

* An object-oriented description allows
the identification of a modular set of
standard services and standardized
client/server interfaces. The reference
model servers are potentially viable
commercial products and are building
blocks for higher-level services and
recursive integration in centralized,
shared, or distributed hierarchical
storage systems. This integration can be
done within single-vendor systems, by
third-party, value-added system in -
tegrators, or by end-user organiza-
tions. The object-oriented modularity
hides implementation details, allowing
many possible implementations in
support of the standard abstract objects
and interfaces (Booch 86).

« For the storage system to be integrated
with applications and operating systems
supporting many different internal file
structures, the abstract object visible
to storage-system clients is an unin-
terpreted string of bits and a set of
attributes.

« The separation of human-oriented
naming from machine-oriented file
identifiers allows integration with
current and future operating systems
and site-dependent naming systems.
This implies separation of the name
server as a separate module associated
with the reference model (Watson
81b).

e The separation of access rights control
as a site-specific module with a stan-
dard interface to the storage system
accommodates the many operating sys-
tems and site-dependent access control
mechanisms in existence.

* The separation of the request and data
communication paths supports existing
practices and the need for third-party
control of transfers between two enti-
ties by direct data transfers from
source to sink, as well as data transfer

redirection and pipelining through such
data transformations as encryption,
compression, and check-summing.

* The separation of the site manager al-
lows site-dependent policies and status
to be managed. Provision is made for
standard site-management interface
functionality.

* Inclusion of a migration server within
the file server allows each file server
to be self-contained and file-migration
policies for each server to be estab-
lished separately. It also facilitates
building a hierarchical storage system
supporting automatic migration be-
tween servers. The general goal is to
cache the most active data on the fastest
storage servers and the least active on
storage servers with the lowest cost-
per-bit medium.

It is envisioned that the modules of the
reference model can be integrated in various
combinations to support a variety of storage
needs from single storage systems to dis-
tributed, hierarchical systems supporting
automatic file migration. Vendors can build
and market individual standard modules or
integrated systems supporting standard
interfaces and functionality. Hopefully, the
development of standards will increase
markets and lead to modules and systems
manufactured in larger numbers, thus
reducing costs as a result of mass produc-
tion economies.

To better understand the modularization and
the requirements placed on interfaces but
not to force a particular design philosophy,
the discussion in this document does not
restrict itself to external interfaces and
services as might be expected of a reference
model. The intent is not to standardize the
internal structure of modules, since this is
implementation- and vendor-specific, but
to provide additional understanding to aid
the model building, interface standardiza-
tion, and implementation processes.

10

2.3 Reference Model
Architecture

2.3.1 Abstract Objects

To follow the description of the reference
model, there are several concepts that
should first be established. These concepts
employ the properties of abstract objects
(Watson 81a), which have been succinctly
listed as :

* Objects are an instance of a type (file,
process, directory, account, etc.). As
such, an object type is defined by:

- An identifier.

- A logical representation visible at an
interface (e.g., a logical represen-
tation of afile is a set of attributes
and a data segment of uninterpreted
bits).

- A set of operations or functions and
associated parameters presented at
the interface to create, destroy, or
manipulate the object.

- Specification of sequences of opera-
tions that are allowed.

* Objects are managed by servers. There
can be many servers for a given type
(e.g., there can be many file man-
agers).

« Objects are of two basic classes, active
and passive. To be manipulated, passive
objects (such as files, directories, or
accounts) must be acted on by requests
from active objects presented at the
server interfaces. Active objects,
which are mainly processes, can di-
rectly change aspects of their own
representation. Active objects can play
either or both of two roles, a client role
accessing a service, and a server role
providing a service or managing a type
of object.

¢ Objects are named via an identification
scheme with a machine-oriented name
that is unique throughout an envi-
ronment. This identification scheme
may be used in conjunction with pro-

Mass Storage System Reference Model:

tection and resource management
schemes. Human-oriented naming is
implemented by separate name servers
that associate mnemonic, human-ori-
ented names with the machine-oriented
object identifiers. Higher-level file
services might integrate the name and
file services.

* Access to objects is controlled by the
server through access lists, capabili-
ties, or other techniques.

2.3.2 Client/Server Properties

The client/server model (Watson 81a) is an
object-oriented paradigm. Simply stated,
both clients and servers are active abstract
objects in which the client requests ser-
vices from the server through a specified
interface. The word client is used to mean
the program that accesses some service. The
word user is reserved to mean the human at
the terminal. A client is an agent of a user.
The server is a provider of a service. Access
to server-supported objects or services is
only through defined server interfaces, thus
hiding implementation details to provide
transparency. Both the client and the server
may be processes or collections of pro-
cesses. These processes are not necessarily
associated with any particular host machine.
We describe the client/server interactions
in terms of messages, but it is understood
that local or remote procedure calls
(Birrell 82) or other communications
paradigms are possible.

A server may be thought of as a collection of
one or more tasks or processes
(concurrently executing instruction
streams). A server may include request
processing and other tasks supporting
concurrent handling of requests from many
clients. Clients may also be constructed as
many cooperating, concurrent tasks.

Client and server processes interact by
sending each other messages, in the form of
requests and replies. A message is the
smallest unit of data that can be sent and
received between a pair of correspondents
for a meaningful action to take place. A
client process accesses a resource by
sending requests containing the operation
specification and appropriate parameters
from one of its ports to a server port. A

Version 4 (May, 1990)

given process can operate in both server or
client roles at different times (Watson 84).
For example, during the migration of files,
a file server that manages magnetic disks
can play the role of client to a file server
that manages magnetic tapes. Another ex-
ample is a name server that stores its cat-
alogs in a file server.

A distinction is drawn between the words
server and service. A service may include
several servers (Svobodova 84). For ex-
ample, a directory service might be im -
plemented by having separate name servers
for objects such as files and for other ob-
jects such as users addresses or printers.
On the other hand, one might implement a
universal directory to provide the whole
directory service (Lantz 85), or one might
choose to implement the file service defined
by the ISO-OSI Virtual Filestore (DIS
8571), where this reference model serves
the unstructured file segment. Thus a
complete file service will likely consist of
name servers and multiple file servers.

2.3.3 Reference Model Modules

The primary reference model modules,
shown in Figure 1, are:

» The bitfile" server, which handles the
logical aspects of bitfile storage and
retrieval,

» the storage server, which handles the
physical aspects of bitfile storage, and

» the physical volume repository, which
provides manually or robotically re-
trievable shelf storage of physical
media volumes.

Closely related to these modules are:

« The bitfile client, which is the pro-
grammatic agent of the user required to

"The word "bitfile" was coined by the IEEE-
CS Technical Committee on Mass Storage
Systems and Technology to refer to a bit
string that is completely unconstrained by
size and structure; it was coined to relieve
those who worked on the model from being
bound by any particular file management
system.

11

convert user desires into bitfile re-
quests to the bitfile server and data
transfer commands to the bitfile
mover,

« the bitfile mover, which provides the
components and protocols for high-
speed data transfer,

« the name server, which provides the
retention of bitfile IDs and the con-
version of human-oriented names to
bitfile IDs, and

» the site manager, who monitors oper-
ations, collects statistics, and estab-
lishes policy and exerts control over
policy parameters and site operation.

These modules are not directly associated
with any particular hardware or software
products.

The modularity of the reference model de-
fines a virtual store for bitfiles. The storage
system can be implemented with many
levels of storage hierarchy, including a
physical volume repository. The structure
of the model permits standard interfaces and
multiple instances of modules, and thus
should facilitate more economical imple-
mentation of many forms of storage archi-
tectures. There may be many different in -
stances of bitfile server and storage server
combinations in which storage servers need
not be of the same technology and can form a
hierarchy.

The bitfile client represents the program
object or agent that accesses bitfiles. This
agent is not the application but acts for the
application. The bitfile client can take many
forms depending on how the storage system
is implemented and integrated into a par-
ticular user environment; it might be one
or more application programs or be func-
tionally supported within an operating sys-
tem to facilitate access to storage. The bit-
file client may run on personal computers,
workstations, or on larger machines. The
bitfile client can also be a part of a data
acquisition system needing the services of a
storage system. The bitfile client can locate
bitfiles by use of a name server. The user's

12

_>

Bitfile Move Complete

Transfer

Bitfile
Mover

—
Move
Command

Application o Client Requests N
<> Bitfile Bitfile
Interface Client | cjient Replies Server
User BitfileID
Name

Bitfile
M over

Site Control

Mass Storage System Reference Model:

< | Bitfile

Move Complete Transfer

Move
Command

Physical
Volume
Repository

To/lFrom % Q >

All Modules

Media Volumes

Site Monitor

Site

M anager

Figurel

The Storage System Reference M odel

human-oriented bitfile names are mapped to
bitfile IDs and bitfile server addresses by
the name server.

It is the interaction of the bitfile client with
the bitfile server, the bitfile server in-
teraction with the storage servers, and the
storage server interaction with the physical
volume repository that are of particular
interest. There may be any number of bit-
file clients in the general system envi-
ronment of a site. Furthermore, bitfile
servers or other entities of the total storage
environment, such as name servers, site
managers, or migration modules, may op-
erate in the role of bitfile clients when they
need storage service themselves.

A bitfile server handles the logical aspects
of the storage and retrieval of bitfiles. The
bitfile server's abstract object is the bit-
file, identified by a globally unique, ma-

chine-oriented bitfile ID. A bitfile is a set of
attributes (state fields) and an uninter-
preted, logically contiguous segment of data
bits.

A bitfile server may keep track of the bit-
files stored in one or more storage servers.
A single bitfile server may control a
hierarchy and need the services of several
storage servers. As an alternative, a single
bitfile server may handle the bitfiles in a
single level of the storage hierarchy or a
single storage technology; multiple bitfile
server-storage server pairs simplify ex-
tensibility and evolution.

The bitfile server accepts requests from
bitfile clients to create, destroy, store, and
retrieve bitfiles, and to modify and inter-
rogate the bitfile attributes needed for sys-
tem management. The bitfile server contains
a request processor to parse the requests

Version 4 (May, 1990)

and control the sequence of actions neces-
sary to fulfill the requests. Before per-
mitting access to a bitfile, the bitfile server
authenticates the access rights of the re-
questor.

The bitfile server communicates action
commands to the storage server. Each bitfile
server contains a migration manager to
prevent overflow of the storage space for
which it is responsible. The migration
manager knows which bitfile server is used
to offload bitfiles, as established by the site
manager and by migration and caching
policies.

The storage server handles the physical
aspects of bitfile storage and retrieval, and
presents the image of perfect media to the
bitfile server. (The capacity of the media,
influenced by imperfections, may be visible
to the bitfile server.) The storage server's
abstract objects, as seen by the bitfile
server, are logical volumes made up of an
ordered set of bit string segments.

Physical volumes and volume serial num-
bers are not visible to the client. The site
manager, however, may have privileged
storage server commands where physical
volumes and devices are treated as visible
objects of the storage server. Volumes and
devices are identified by volume and device
IDs.

Bit stream segments are identified by
segment descriptors. These segments rep-
resent how the storage server has allocated
space for the bitfile data blocks. Each
segment is identified by a descriptor gen-
erated by the storage server, and the
ordered set is retained as a bitfile attribute
by the bitfile server. The storage server
must internally map bit string segments to
real physical volumes (removable or not)
and addresses where the bitfiles are stored,
provide read/write (and some error man-
agement) of those volumes, and be able to
access a bitfile mover to transmit and re -
ceive bitfile data blocks. One or more logical
volumes may be mapped to a given physical
volume, or one logical volume may be
mapped to several physical volumes. Thus, a
storage server contains storage devices,
device-specific controllers that map bit-
files to bit string segments on physical
volumes, and a means for handling and

13

managing physical volumes on the storage
devices.

The physical volume repository server
manages a library that stores physical
volumes such as tape reels, tape cartridges,
or optical disk platters. Physical volumes,
identified by physical volume IDs, are its
abstract objects. A physical volume repos-
itory server can be used by one or more
storage servers.

The site manager is a client process that can
generate and send ordinary and privileged
requests to the other servers to set policy
parameters, install logical and physical
volumes (import, export), obtain statistics
and status, run diagnostics, etc.

The various clients and servers are inter-
connected through a communication service,
which must handle all of the inter-process
communications involved in requests and
replies, as well as the high-speed transport
of bitfiles. The elements of the communi-
cations service may be distributed through
the many physical processors of the site.
The reference model does not specify the
details of this service but does assume its
existence whether by procedure call, re-
mote procedure call, or message passing. In
particular, the model does not require
homogeneity of this communication service.
The communication service can include
movement across /O channels as well as
across networks. The model assumes the
ability to separate data movement from
request movement. All that is required is
that entities that must communicate are, in
fact, able to do so and that standard inter-
faces are supported. The model has separated
authentication details to allow each site to
install the form appropriate to that site.

Existing storage systems often include a
high-performance data path of some type,
often specially designed, to handle the high-
volume, high-speed data flow between the
bitfile client and the storage server. In the
reference model, the need for a high-speed
data path is incorporated as part of the
communication service referred to as the
bitfile mover. This path has been separated
from the request path to correspond to ex-
isting practice; to facilitate third-party
control of transfers; to facilitate insertion
of data transformations such as encryption,

14

compression, and check-summing; and to
support transfer redirection. If a general
network is used for the communication
service, it has to account for this need for
high transmission speed of bitfiles as well
as the communication of requests and
replies.

Mass Storage System Reference Model:

Version 4 (May, 1990)

15

3. Detailed Description of the Reference Model

This description of the reference model
discusses the entities shown in Figure 1 in
more detail. In describing the functions
accepted by each module, input parameters
that are common to all functions are deleted
for clarity. These parameters include the
identification of the client making the re -
quest or other access-control information,
accounting information, and a transaction
identifier. Similarly deleted are the
transaction identifier and the success/fail
indication common to all responses. |If
functions fail, error information will re-
place the expected responses. Optional pa-
rameters that can be defaulted are enclosed
in square brackets (Miller 88a, 88b).

3.1 Bitfile Client

The bitfile client is the collection of
hardware and software at a user node within
the site to permit that node to use the
storage system. Bitfile clients are respon-
sible for providing the storage system in -
terface to users at the terminal or to ap-
plication processes by:

e Translating user and application re-
quests for storage services into bitfile
server requests, and

e providing communication with the
appropriate bitfile servers and movers
as determined by the name server

mapping.

The bitfile client may be library routines
within the application, an interface process
(local or remote), or routines within an
operating system kernel, and it may com-
bine the services provided by multiple
bitfile servers, bitfile movers, and name
servers to form the higher-level abstract
objects of an integrated storage service. The
syntax and semantics of messages that flow
between the bitfile client and the bitfile
server should be the same regardless of the
type of bitfile client. These messages iden-
tify the bitfile to be acted upon and specify

which of the basic commands and parame-
ters are to be processed.

When a bitfile is created, the bitfile ID is
generated by the bitfile server and passed
back to the bitfile client for retention. When
the user accesses an existing bitfile by
name, the bitfile client obtains the bitfile ID
from a name server or some other data base
system.

Several arrangements of the bitfile client
are possible. In the first arrangement, the
“kernel view”, all bitfiles are logically
local. The bitfile client is a program in a
processor with its own operating system and
local storage. The storage and site-man-
agement capabilities of the local operating
system are what the user sees with respect
to how his bitfiles are handled. To the kernel
of the operating system is added code that
permits the operating system to determine
if a bitfile being requested is locally stored
or remote (Sandberg 85). If it is remote,
this special code in the operating system
kernel makes up the messages for the bitfile
server and possibly for the name server.
Alternatively, the local/remote distinction
can be made in a library routine, and the
library code can act as the bitfile client
(Brownbridge 82). In either case, the bit-
file is put into a local user buffer or is
cached in an operating system buffer or a
local bitfile and, except for a possible delay,
the remote transfer is transparent to the
user.

In a pure “client/server” view, all bitfiles
are logically remote. Here, all references to
bitfiles are translated into messages for a
bitfile server, using routines in a library
or other run-time support facility, such as
a remote invocation system. The bitfile
server might be local or remote; in a disk-
less workstation for example, the bitfile
server is remote. Mapping human-oriented
names to machine-oriented bitfile IDs is a
separate, explicit step or is hidden in the
run-time support facility (Svobodova 84,
Watson 84).

16

In a third view, the systems that create and
store bitfiles are separate from the systems
that retrieve and process the data contained
in the bitfiles. Such might be the relation-
ship between a data acquisition system that
puts bitfiles into the storage system and the
systems in a data processing center that use
them. While there is no name server per se,
some means must be provided to retain
bitfile IDs when they are returned from the
bitfile server and to pass them in some
understandable way (e.g. using a data base
management system) to the processing sys-
tems. Such systems must take care to back
up their records; if the bitfile IDs are lost,
the bitfiles become lost objects in the
storage system.

3.2 Name Server

The development of distributed systems has
caused a much more in-depth look at
schemes for identifying objects. While the
advent of distributed systems brought this
about, the requirements recognized are not
restricted to distributed systems. They
apply to all systems, especially those that
grow in size. Dealing properly with naming
is central to achieving the location trans-
parency needed in a distributed system.
Thus, it is advantageous to look at some of
the properties of identification schemes.

There are many possible ways to designate a
desired object (Watson 81b):

¢ by an explicit name or address (object
X or object at address x),

¢ by content (object with value or value
expression x),

¢ by source (all my files),

« by broadcast identifier (all objects of a
class),

* by group identifiers (participants in
class x),

* by route (all objects found at the end of
path x),

¢ by relationship to a given identifier
(all previous sequence numbers), etc.

Mass Storage System Reference Model:

A useful informal distinction between three
important classes of identifiers widely used
in system design—names, addresses, and
routes—is (Shoch 78):

* The name of a resource is what we seek,
* an address indicates where it is, and
« a route tells how to get there.

One should not examine such informal def-
initions too closely. Names, addresses, and
routes can occur at all levels of the archi-
tecture. Names used in the inter-process
communication layer have often been called
such terms as ports, or logical or generic
addresses. A human-oriented chain or path
name can be thought of as a “route” through
a directory. An important idea is that iden-
tifiers at different levels of the architecture
referring to the same object must be bound
together in contexts, statically or dynami-
cally. Later they must be resolved using
these contexts to locate the named objects.

There are important system benefits if
every bitfile ID is unique (Leach 82). Less
obvious are the system-wide ramifications
of the total naming system, especially the
choice of the particular mechanism used to
create unique bitfile IDs and the mechanism
to associate application-dependent, human-
oriented names with them. Of the many goals
and implications of identification schemes
enumerated by (Watson 81b), the goals that
are the most pertinent to the reference
model are abstracted and discussed below.

The naming system should:

e Support at least two levels of identi-
fiers, one convenient for people and one
convenient for machines. The latter is
the bitfile identifier. The former will
be handled by site or operating system
specification of the name servers or by
imbedding a name service in a higher
level file service.

The separation of identifier levels is
very important because a storage sys-
tem must be integrated with many types
of heterogeneous applications and op-
erating and storage systems
(centralized and distributed), each

Version 4 (May, 1990)

supporting its own form of human-
oriented naming scheme. The reference
model provides a clean separation of
mechanism for these two levels of
identifiers and allows their easy in-
tegration. (When the client is re-
sponsible for the use of the bitfile 1D,
there is the potential to create lost
objects in a system and thus mecha-
nisms must also be included to assist
the system in identifying them so that
the resources they use can be re-
claimed.)

Support distributed generation of ma-
chine-oriented, globally-unique bitfile
identifiers. A variety of mechanisms
are available to support this need
(Leach 82, Mullender 84, Watson
81b). One mechanism is to include both
a bitfile server ID and atime stamp in
the identifier. This structure, con-
taining node or server boundary in-
formation, is at most a hint to appli-
cations as to where to send access re -
quests and should not restrict migra-
tion. A machine-oriented identifier is a
bit pattern easily manipulated and
stored by machines and may be directly
useful with protection, resource
management, and other mechanisms. A
human-oriented identifier, on the other
hand, is generally a character string
that is readable by humans and that has
mnemonic value. Directory path names
are a common mechanism (McLarty
84).

Provide a storage system viewed as a
global space of identified objects rather
than as a space of identified host com-
puters containing locally-identified
objects. Similarly, the identification
mechanism should be independent of the
physical connectivity or topology of the
system. That is, the boundaries of
physical components and the connection
among them as a network, while tech-
nologically and administratively real,
are invisible in object identifiers.
Further, an object's name should be
independent of client or server location.
Users should be able to discover or
influence an object's location.

¢ Support relocation of objects. The im -
plication here is that there be at least
two lower levels of identifiers and that
the mapping and binding between them
be dynamic. For example, bitfiles are
expected to migrate. Therefore, the
bitfile IDs should not contain storage
addresses, and there must be mecha-
nisms for updating the appropriate
context (e.g. directories and tables)
when objects are moved.

e Support use of multiple copies of the
same object. For example, a file may be
cached on disks at one or more hosts, on
staging disks, or it may be stored on an
archival volume. If the value of the
object is only going to be read or in-
terrogated, one set of constraints is
imposed. If values are to be written or
modified, tougher constraints must be
imposed to achieve consistency between
the contents of the copies. Policies of
enforcement of such constraints are
handled using the basic locking services
specified by the reference model.

¢ Allow multiple local, user-defined
(human-oriented) names for the same
object by allowing multiple mappings
of a given bitfile identifier within the
services of one or more hame servers.

e Support two or more resources sharing
a single instance of a storage object
without identifier conflicts.

¢ Minimize the number of independent
identification systems needed across and
within architectural levels.

3.3 Bitfile Server

A bitfile server (Falcone 88) handles the
logical aspects of bitfiles that are physically
stored in one or more storage servers of the
storage system. As shown in Figure 2, the
major components of a bitfile server are a
bitfile server request processor, a bitfile
descriptor manager and its descriptor table,
a migration manager, a bitfile ID authen-
ticator, and a space limit manager and its
space limit table.

17

18

Migration
Manager

Authentication Request

Command & BitfileID

Mass Storage System Reference Model:

BitfileID
Authentication

Authentication Reply

Client o Bitfile
Request/ Request - Bitfile Descriptor Descriptor
Reply Pr ocessor Manager

To
Other

Bitfile

Servers

Account Server

Site
M anager

\

Storage Servers

Bitfile Descriptor Tables

Space Limit Table

Figure?2

The Bitfile Server

The bitfile server accepts requests for
service on bitfiles from the bitfile client,
site managers, migration manager, and
other bitfile servers. A discussion of the
operations that bitfile clients can request of
the bitfile server regarding the bitfile fol-
lows. The function parameters are shown in
Table 1.

3.3.1 Bitfile Server Commands

Abort
The client requests that a previous
request be aborted.

Create
This request is used to establish a new
entry in the bitfile server's descriptor
table. The requestor must prove his
right to do so, and when this is estab-
lished, he receives a new bitfile ID
from the bitfile server, which may

then be saved for use when the bitfile is
accessed later.

Destroy

The client requests that a bitfile de-
scriptor be removed from the bitfile
descriptor table. The space allocated to
the bitfile within a storage server is
deallocated and, if the medium can be
rewritten, the storage server returns
it to the free-space list.

Erase

This request erases data on a storage
server with the specified erasure
pattern. If only a segment is to be
erased, then the client must specify the
length of the segment and an optional
offset field displacing the length into
the bitfile.

Version 4 (May, 1990)

Lock
The client requests that a bitfile be
locked for read access or for read/write
access.

Modify
The client requests a change in one or
more attributes of a bitfile contained in
the bitfile descriptor table.

Query
The client requests information about a
bitfile or a bitfile's attributes from the
bitfile descriptor table.

Retrieve

The client requests that a bitfile or a
segment of a bitfile be moved from the
storage server median to the bitfile
client or application buffer. If only a
segment is to be moved, then the in-
ternal starting bit address (offset) and
the bit string length of the segment to
be transferred must be specified. (The
data transfer is on a separate logical,
and perhaps physical, path from the
request/response path; the data block
itself is not part of the response.)

Status
The client requests the status of a
previous request made by the client.
Although the way in which status is
implemented is site dependent, gener-
ally a transaction ID must be generated
to support the status request.

Store

The client requests that a bitfile data
block be moved from a bitfile client or
application buffer to the storage server
medium. This request may include the
ability to append a segment at the end of
an existing bitfile or to wupdate a
physically specified segment of an ex-
isting bitfile. (The data block itself is
not part of the request.)

Unlock
The client requests that any locks held
be released.

The interface on which this list of commands
can be sent is shown in Figure 1 as bitfile
client requests and bitfile server replies.

19

The site manager will have additional
privileged requests to control allocated
space limits, examine all bitfile directory
fields, set access control and migration
policy parameters, etc.

3.3.2 Bitfile Request Processor

The bitfile server request processor ac-
cepts, parses, and executes request mes-
sages from:

* The bitfile clients, to store, retrieve,
and manage bitfiles,

« the site manager, to provide monitoring
and control,

« the migration manager, to move bitfiles
to other bitfile servers, and

« other bitfile servers, to support mi-
gration.

The request processor is therefore essen-
tially the sequencer and controller of ac-
tions within the bitfile server and the in -
terface to the other storage system modules.
Requests must be scheduled to provide the
best possible response to the bitfile clients
while optimizing the use of the available
resources. Client-specified priority, bitfile
size, and storage server availability may
affect the request scheduling. These actions
require a significant amount of processing.
In executing a request, the request pro-
cessor may interact with the bitfile de-
scriptor manager to retrieve, create, or
update bitfile attribute information, and
with a storage server to allocate or release
logical volume space for bitfile storage and
to store and retrieve bitfiles. To select a
storage server when a bitfile is created, the
request processor must have information
about the bitfile (bitfile size, the response
desired, the protection and reliability de-
sired, the type of storage desired, etc.) and
must match this information with the
characteristics of the available storage
servers. Bitfile clients might be able to
specify a specific storage server or logical
volume as well.

Mass Storage System Reference Model:

Table 1
Bitfile Server Functions

Function Parameters Response
Abort Transaction ID
Create [Initial length in bits] Bitfile 1D
[Maximum length in bits]
[Attribute Value/Name pair list]
Destroy Bitfile ID
Erase Bitfile 1D Number of bits erased
[Offset]
[Length]
Erasure pattern
Lock Bitfile 1D
Lock type
Modify Bitfile 1D
New attribute name/value pairs
Query Bitfile 1D Attribute name/value pair list
Attribute name list
Retrieve Bitfile 1D Number of bits transferred
[Offset]
[Length]
Data transfer sink ID
Status Transaction ID Transaction status
Store Bitfile 1D Number of bits transferred
[Offset]
[Length]
Data transfer source 1D
Unlock Bitfile 1D

The request processor is responsible, using

3.3.3 Bitfile Descriptor Manager

the bitfile ID authenticator, for the security
and integrity of the access to bitfiles, and
for synchronizing the sharing of bitfiles
through its locking services. The bitfile
request processor collects accounting data
from all affected sources regarding each
transaction and sends them to the account
service. The request processor also com-
municates with the space limit manager to
determine that the resources assigned to a
particular account are not overdrawn.

and Descriptor Table

State and attribute information for each
bitfile is kept in records in a descriptor
table. Each record is called a bitfile de-
scriptor. A descriptor manager provides an
interface for the request processor to store,
retrieve, and update bitfile descriptors.
Bitfile descriptors are accessed using a
bitfile ID as a key which is assigned by the
descriptor manager when the bitfile de-
scriptor is created.

Version 4 (May, 1990)

A convenient way to classify bitfile de-
scriptors is by origin and usage. Typical
bitfile descriptor classes and some examples
are:

« Created and used by the bitfile
client.

- comment
- bitfile format

 Created by the bitfile client and
used by the bitfile server.

- access-control information
- account ID

- bitfile lifetime

- desired level of redundancy
- family attribute

- maximum bitfile length

- priority

- security level

- service class

- storage class

- type of storage desired

 Created by the bitfile server and
used by both the bitfile server
and the bitfile client.

- access statistics

- accounting statistics

- bitfile allocated length
- bitfile 1D

- bitfile length

- creation time

« Created and used by the bitfile
server.

- last backup time

- last migration time

- location of backup copy
- lock information

- previous location

« Created by the storage server
and used by bitfile server.

- last device to write bitfile
- location of bitfile

The importance of descriptor tables neces-
sitates that backup and recovery be sup-
ported by the descriptor manager.

21

3.3.4 Bitfile ID Authenticator

The bitfile ID authenticator implements a
mechanism, such as an access list or DES
encryption used in a capability system,
which protects the bitfile ID from being
forged. It may also enforce security policy
based on the security level of the bitfile, the
request message, or the client. The authen-
ticator is called by the descriptor manager
when the bitfile ID is created to support the
authentication mechanism and, when are -
guest for access to the bitfile is received, to
authenticate the bitfile 1D presented by the
client. If the access control is via an access
control list, an identifier of the accessing
entity (principal ID) must accompany the
request and be checked against an access list
that is kept, at least logically, in the bitfile
descriptor. If access control is via a capa-
bility system, the bitfile ID may be en-
crypted along with some redundant and ac-
cess-right information within the capa-
bility, and decrypted by the authenticator
and compared against information in the
descriptor when the bitfile is accessed. It is
assumed that the authentication module can
be added by a site or systems integrator
since access control mechanisms and secu-
rity policies are site-dependent (Jones
79b, Donnelley 80, Mullender 84).

3.3.5 Migration Manager

No single storage server now available can
provide both the performance and large
capacity often needed by a large storage
system. A successful strategy is for a
number of bitfile servers and their asso-
ciated storage servers to be operated as a
storage hierarchy.

A migration manager is associated with each
bitfile server. The migration manager is
responsible for maintaining enough free
space on the logical volumes managed by its
bitfile server (e.g. disk storage) to ensure
that requests for new bitfiles can be
honored. When the migration manager ini-
tiates a migration procedure, it first
gueries the bitfile descriptor manager for
information about all of the bitfiles that
might be migrated. This information might
include the bitfile priority, size, locks,
activity, idle time, and client-desired re-
sponse. Bitfile clients may be given dif-
ferent degrees of control, by various site

22

management policies, over the placement of
their bitfiles in the storage hierarchy.
Using policy set by the site manager, the
migration manager determines which bit-
files should be moved. Finally, the migra-
tion server sends requests to the bitfile
server request processor to move the bit-
files to a bitfile server “lower” in the
storage hierarchy. (Bitfiles move “up” in
the hierarchy, toward higher-performance
servers, as they are accessed; this move-
ment is orchestrated by the bitfile server
request processor.)

An alternate configuration may permit the
migration manager to act as a third-party
controller to initiate the request for a move.
The separate request and data paths in the
reference model allow data to move directly
from a source storage server to a sink
storage server, even though a third party
initiated the transfer between the two bit-
file servers. A request path may span two or
more bitfile servers until the bitfile is
located. To increase performance during
retrieval, it may be desirable to establish a
direct data transfer path, bypassing some
storage servers, once the bitfile has been
located. Such might be the case when bitfiles
are accessed on very rare occasions and it is
not economic to bring them back up the
hierarchy.

3.3.6 Space Limit Manager

The space limit manager checks to see what
logical volumes a given account, user, or
user group is allowed to use; it controls
space allocations, number of bitfiles al-
lowed, or other policy parameters associ-
ated with space resource management that a
given site may wish to enforce. The space
limit table has entries for each account or
principal ID for maximum and current
space and bitfile limits.

3.4 Storage Server

A storage server (Savage 88) may best be
visualized as an intelligent storage con-
troller and its suite of storage devices. A
storage server consists of a physical storage
system (containing the physical bitfile-
storage medium), a logical-to-physical
volume manager, a physical device manager,
a means of command authentication (unless

Mass Storage System Reference Model:

it is a trusted component of the storage
control processor), and some part of or in-
timate connection to the bitfile mover. A
diagram of the storage server is shown in
Figure 3.

The abstract objects of the storage server
that are visible to the bitfile server are
logical volumes and bit string segment de-
scriptors. The descriptors of the space
occupied by a bitfile form an ordered set of
bit string segments identified by descrip-
tors, each of which contains the logical
volume ID, the starting point of the segment
on the logical volume, and the length of the
segment. The bit string segment descriptors
are created by the storage server and stored
in the descriptor tables of the bitfile
server.

Each logical volume is considered to be a
logical image of flawless media usable for
storing bitfile data blocks, thus providing
the separation of physical and logical space.
Separation of logical and physical volumes
supports segment relocation when media
fail, where new storage devices are intro-
duced, and when space utilization or
transfer rate are optimized. Any media area
that is unavailable for data storage because
of flaw areas, formatting, control tracks,
etc., is excluded from representation in the
logical volume by the logical-to-physical
mapping function.

The list of operations supported by the
storage server are listed in Table 2. The site
manager has a number of privileged oper-
ations including create, destroy, modify, and
qguery of logical volumes, physical volumes,
and physical devices.

3.4.1 Physical Storage System

A physical storage system consists of the
devices used to read and write volumes and
the drivers to control those devices (to po-
sition heads properly in relation to the
media before reading or writing, etc.). The
available physical storage systems cover a
broad spectrum of characteristics in terms
of random or sequential access, rewritable
or write-once media, capacity, and per-
formance.

Version 4 (May, 1990)

Bitfile Mover

Storage/Retrieve Reply

Storage/Retrieve Request

23

<@—PpPhysicalVolume Repository

Q_ A

PhysicalVVolumes

22:\'/'; Storage
Server
Site — Request
Manager Processor < >

Physical Device Descriptor Table

r Logical-To- Y
Physical

Request
Authenticator

Figure3

Volume
M anager

Y

L ogical-To-Physical Map

Physical Volume Tables

Logical Volume Tables

The Storage Server

3.4.2 Physical Device Manager

The physical device manager communicates
with drivers in the physical storage system
to load, unload, and position media volumes
(it is the bitfile mover that controls the
actual transfer of data).

Physical device managers vary from simple
modules associated with fixed-media de-
vices, such as Winchester disks, to complex
modules that deal with manually mounted

volumes, as in systems with standard
magnetic tape drives or automatically
mounted volumes, such as in the IBM 3850
and the STK 4400 Automated Cartridge
Library. In automated systems, the physical
device manager communicates with a
physical volume repository to request that
physical volumes be mounted. The physical
device manager maintains a mounted volume
table to optimize mount requests. It sched-
ules and executes requests in a manner that
attempts to give the desired response to its

24

Mass Storage System Reference Model:

Table 2
Storage Server Functions
Function Parameters Response
SS-Allocate logical volume IDs new segment descriptors

SS-Deallocate
SS-Retrieve

SS-Store

existing segment descriptors
desired length

existing segment descriptors

segment descriptors
starting offset

bit string length
sink descriptor

segment descriptors
starting offset

bit string length
source descriptor

number of bits transferred

number of bits transferred

clients while at the same time making the
best use of the storage system and commu-
nication resources. For example, it may be
desirable to give higher priority to trans-
fers for which volumes are already mounted
or to small bitfile transfers, to limit the
number of concurrent large bitfile trans-
fers, or to use a client-specified priority.

3.4.3 Logical-to-Physical Volume
Manager

The logical-to-physical volume manager
maintains descriptors of attributes for each
logical and physical volume and a set of ta-
bles to permit mapping the bit string
segment descriptors of the logical volumes
onto physical space in one or more physical
volumes. The bit string descriptors include
volume serial number, starting point ad-
dress, and attributes for each logical and
physical volume. Examples of attributes are
creation time, size, security level, and
physical volume attributes.

The logical-to-physical volume manager
understands the characteristics of the actual
physical volumes used by the storage
server. Its main functions are to allocate
and deallocate space and to convert logical

bit string segments to physical bit string
segments for that bitfile. The logical-to-
physical volume manager also maintains a
flaw map to map, for example, defective
tracks on a magnetic disk to spare tracks
(some device controllers maintain flaw
maps, making duplicate maps in the volume
manager unnecessary). Similarly, it
maintains a map of disk tracks or magnetic
tape block numbers that are used for control
and formatting and that are thus unavailable
for data storage. When data is moved within
the storage system because errors start to
occur or new physical devices or volumes
are introduced, the map must be changed.

A map of the free and used space is main-
tained for each logical and physical volume.
Space summary information for each vol-
ume may be retrieved to aid in the volume
selection process. This volume information
is retained in the storage tables, which must
have the same reliability and performance
as the directory in the bitfile server, i.e., it
must be backed up and recoverable or it
must be possible to build the information
from other records. All of this information
is available to the site manager interface.

Version 4 (May, 1990)

3.5 Physical Volume
Repository

The physical volume repository (Coleman
88, Savage 85), shown in Figure 4, stores
physical volumes. It may be manual or
mechanical.

The physical volume repository is re-
sponsible for managing the storage of media
volumes and for mounting these volumes
onto drives managed by the physical device
manager. Volumes may be stored in an au-
tomated library that includes a robot ca-
pable of mounting the volumes or stored in a
vault and mounted manually.

The architecture of the physical volume
repository is that of a server that manages
abstract objects called physical volumes. A
physical volume consists of a media volume
and a volume descriptor. (A physical volume
is similar to a bitfile in that both include a
resource and a resource descriptor.) The
volume descriptor contains at least the fol-
lowing fields:

e The current physical location of the
media volume. The volume might be in a
vault, in a storage cell of an automated
device, mounted on a drive, or held by a
robot.

¢ A human-readable label by which an
operator can identify the volume.

e The media type. One physical volume
repository might manage both magnetic
and optical media, different varieties of
magnetic tape, etc.

« Information to identify the owner of the
volume.

e Access-control information to validate
requests. In a capability-based system,
this information might be an encryp-
tion key. In other systems, this in-
formation might be a list of clients
authorized to access the volume.

25

* Various statistics associated with the
volume, such as the number of times
the volume has been mounted and the
time of the last mount.

Associated with each physical volume is a
volume identifier. This identifier, when
included in a request, allows the physical
volume repository to locate the descriptor
for the media volume and, in a capability-
based system, proves that the client is au-
thorized to access the volume. The format of
the volume identifier is not specified by the
reference model. If the medium is optical
disk and only one side of a physical disk can
be read at a time, there may be a unique
volume identifier associated with each side
of a disk.

The physical volume repository maintains
the volume descriptors on a storage device
to which it has access. The physical volume
repository cannot maintain the volume
descriptor on the volume itself because:

« The reference model does not specify
the format of the data on a volume. In
some implementations, the physical
device manager may be able to read
volume labels (using a bitfile mover),
but if unlabeled volumes are allowed,
only the bitfile client or the ultimate
application can interpret the contents
of the volume.

 Most types of archival media do not
support “update in place”, preventing
the physical volume repository from
maintaining dynamic information, such
as the time of last access, on the volume
itself. Information on WORM optical
disks, once written, cannot be modified.
Some volumes, such as CD-ROMs,
cannot be written at all.

e One of the important pieces of infor-
mation in the volume descriptor is the
physical location of the volume. One can
hardly access the volume to determine
where it is!

26

Physical Volumes

Q

Storage Server <@¢———p»

Storage Server

<4—P | Repository

Automated
Library

Mass Storage System Reference Model:

Driver

Request

Operator

Pr ocessor

SiteManager <@¢—Pp»

fA

Request
Authenticator

Figure4

—> Descriptor

Interface

Volume

Volume Descriptor Table

The Physical Volume Repository

The client interface consists of the opera-
tions necessary to allow the physical device
manager to mount and dismount volumes and
to allow the site manager to query and
change the state of the repository. The op-
erations and parameters that are unique to
the physical volume repository are listed in
Table 3 and described in the following
paragraphs.

PVR-Dequeue
Any queued request for the specified
volume with the specific write-protect
mode that includes the specified drive
as an acceptable drive is cancelled.

The dequeue function is routinely used
by the physical device manager to
remove requests for manually mounted
volumes. Even though the physical
volume repository maintains the queue

of requested volumes, the physical
device manager may be the only module
able to detect that a volume has been
mounted on a drive not accessible to the
physical volume repository. If an op-
erator inserts a requested volume into
an automated library, the physical
volume repository will mount the
volume on an available drive; if the
physical volume repository can identify
the volume by reading an external la-
bel, and a request for this volume is
queued, the physical volume repository
will choose a drive acceptable for that
request. Otherwise, the physical vol-
ume repository will choose any drive
capable of handling the volume. In any
event, the physical volume repository

will not remove the request from the
queue until it receives a dequeue
command from the physical device
manager.

Version 4 (May, 1990)

Table 3

Physical Volume Repository Functions

27

Function Parameters Response
PVR-Dequeue volume ID
write-protect mode
drive 1D
PVR-Dismount volume ID
drive 1D
PVR-Eject volume ID
reason
PVR-Locate volume ID current volume location
PVR-Mount volume ID drive ID or queued for manual mount

write-protect mode
list of acceptable drives

PVR-ReadQueue gueue offset

maximum number of entries to send

PVR-ReadStatus device ID
type of status desired

PVR-SetStatus device ID
type of status
desired value

device status

PVR-Dismount
The media volume on the specified drive
is dismounted and stored in a location
selected by the physical volume
repository.

The volume identifier is included in the
dismount command to allow the physical
volume repository to update its
records; if the physical volume
repository has a mechanism to identify
the volume itself (by reading an ex-
ternal label), the volume identifier
serves to confirm the physical volume
repository's records and to detect
anomalies.

PVR-Eject
The volume is removed from the domain
of the physical volume repository. The
“reason” parameter is an optional
string to be sent to the operator ex-

plaining why the volume is being
ejected.

In an automated system, the Eject
command will probably result in the
volume being moved to a port accessible
by the operator.

PVR-Locate

The PVR-Locate function is used to
determine volume locations when, for
example, an automated library has
failed and volumes are being accessed
manually.

PVR-Mount

A media volume is mounted on a drive.
Volumes queued for manual mounting
are displayed on an operator console if
the physical volume repository con-
trols such a device (remotely con-
trolled consoles can use the PVR-

28

ReadQueue command described below).
Some physical volume repository im -
plementations may allow concurrent
requests in which no volumes of a group
are mounted until all can be mounted,
or requests with a choice of volumes.

PVR-ReadQueue
For each request queued for a manual
mount, the volume identifier, list of
acceptable drives, and the write-pro-
tect mode are returned.

Providing a queue offset and a maximum
number of entries to send in the PVR-
ReadQueue command allows the client to
receive only the number of entries that
it can handle. This function also sup-
ports operator displays not under the
control of the physical volume repos-
itory.

PVR-ReadStatus

The amount and type of status infor-
mation is dependent upon the devices
controlled by the physical volume
repository and upon their configura-
tion. Status information might include
the on-line status of the device, the
volume identifier of the volume
mounted on the device, current or
previous error information, configu-
ration information, etc.

PVR-SetStatus
The particular status values are de-
pendent on the devices controlled by the
physical volume repository. This
function is used to bring devices on-
line, take them off-line, set diagnostic
or manual modes, etc.

3.6 Communication Service

The communication service includes the
capability to communicate request messages
as well as the bitfile mover (Kitts 88) for
high-speed transfer of bitfile data blocks
(Allen 83).

Mass Storage System Reference Model:

A bitfile mover is a set of modules that move
data from one source/sink to another. A
storage system includes at least two bitfile
movers (Figure 1), one controlled by the
bitfile client and the other controlled by the
storage server. Additional movers may be
required for more complex routing. Figure
5 shows the control and data paths necessary
to move data from source to sink.

A source or sink can be defined as:
« A memory buffer, local or remote,

« a media extent, such as on local or
remote disk, or

* a channel interface connected to a de-
vice.

These definitions do not limit the methods of
data transport used by the bitfile mover or
the ability to transform data during the
move. Because the mover's source and sink
interfaces depend on the devices, network
interfaces, and network protocols used by
the site, the reference model does not
specify them. The bitfile mover's control
interface to the source or sink manager,
however, can be specified.

The Move operation supported by the mover
is shown in Table 4.

The source and sink descriptors may de-
scribe network interfaces, buffer ad-
dresses, or device descriptors (device ad-
dresses, block information, etc). One de-
scriptor is sent by the bitfile client; the
other is provided by the storage server.

The transformation description may specify
translation, compaction, compression,
encryption, and/or check-summing to be
performed by the mover.

The site manager interface can, through
privileged commands, interrogate channel
status and other mover statistics.

Version 4 (May, 1990) 29
Data Data
“
Source/Sink Bitfile Mover Source/Sink
- -
Control Control
Control
Sour ce/
Sink Manager
Figure5
The Mover
Table 4
Mover Function
Function Parameters Response
Move direction number of source bits moved
source descriptor number of sink bits moved
sink descriptor
transformation descriptor
3.7 Site Manager Site management attempts to allocate the
resources of the storage system to the best
Site management (Collins 88) is the col- use for the overall benefit of the site.
concerned with the control, performance manual and automatic procedures must be
and utilization of the storage system. These developed to implement those policies. The
functions are often site-dependent, involve procedures must be adaptable because the
human decision making, and span multiple requirements will change as time pro-
servers. The functions may be implemented gresses and because the same software may
as stand-alone programs, may be integrated be run at a number of different sites.

with the other storage system software, or
may be policy.

30

For this discussion, the site management
functions are grouped into seven areas:
storage management, operations, systems
maintenance, software support, hardware
support, administrative control, and bitfile
management. The format will be to state the
requirements and then discuss the tools
needed to satisfy these requirements for
each area.

3.7.1 Storage Management
3.7.1.1 Requirements

The storage management function is con-
cerned with providing good performance and
reliability —for user storage and access
needs, while utilizing the storage servers in
an efficient and cost-effective manner. The
specific goals are to optimize the overall
performance of the storage servers, to
control placement of bitfiles in the storage
hierarchy, to maintain sufficient free space
in each storage server, to control frag-
mentation of space on volumes, to add and
delete volumes, to recover data from bad
volumes, to implement data backup policies,
to enforce space allocation policies, and to
determine the need for equipment. Most of
the activities should be automated to the
extent that the task of the human system
administrator is primarily one of moni-
toring summary reports and using reports
for planning purposes.

3.7.1.2 Tools Needed

The key to storage management for any
storage system is the ability to gather and
utilize information about the current state
of the storage servers and statistics on their
transaction histories. The total space, total
free space, and distribution of free space on
individual volumes define the state of a
storage server. Information should be ex-
tracted from the transaction log of each
storage server to give the number of bitfile
accesses, amount of data transmitted, av-
erage and mean response times, average and
mean data transfer rates, and patterns of
access by bitfile age, activity and size.
Performance monitor programs are needed
to provide information such as the average
wait and response times, resource utiliza-
tion, demand and contention, and queue
lengths for storage system components.

Mass Storage System Reference Model:

The migration manager component of the
bitfile server is the primary tool for im -
plementing storage management policies.
The migration manager uses guidelines set
by the system administrator as well as
historical data and current state data to
determine the amount of free space to keep
available for each storage server, to decide
what bitfiles (by activity, size, etc.) should
be stored on each storage device, and to de-
termine which bitfiles to move within the
hierarchy to keep active bitfiles readily
accessible.

The storage system should have automatic
fragmentation control. Information about
the amount of free space and allocated space
can be used to determine when to re-pack
volumes. This function may be performed by
the migration manager or by some other
storage server module.

Programs to analyze, initialize and label
volumes should be provided, along with
storage server commands to add and delete
volumes. Two distinct types of volumes ex-
ist. Volumes like fixed magnetic disks are
not demountable, and are usually defined to
the operating system at system generation
time. Demountable volumes such as tapes or
optical disks are not subject to these con-
straints.

Storage servers and physical volume
repositories should manage their de-
mountable volumes largely without human
intervention. The only human activities
involved are occasional monitoring and
revision of control parameters and sup-
plying empty volumes to the storage server
or physical volume repository when needed.

Two areas of storage management require
the direct involvement of knowledgeable
persons. The first is the recovery of data
from bad volumes. Programs are needed to
analyze, display and modify information on a
volume, and to copy the entire contents of a
volume to another volume without changing
bitfile locations, skipping bad data which
cannot be read after a number of retries.
Data recovery may use the migration
manager to evacuate a bad volume by moving
individual bitfiles. The decision as to which
type of recovery should be used in a par-
ticular case must be left to an experienced
person.

Version 4 (May, 1990)

System planning also requires human in -
volvement. As new products are developed
and old ones discontinued, changes in the
storage servers are needed. In addition,
changes in the network or user environment
may require changes in the storage man-
agement policy or implementation.
Statistical information may be used to decide
when storage servers/devices should be
enhanced, acquired and phased out. Changing
patterns seen in usage information may be
the best indicator that changes are needed in
the policies of storage management.

3.7.2 Operations
3.7.2.1 Requirements

The operations functions are concerned with
making sure that the storage system oper-
ates continuously and insuring that user
requests are being satisfied in atimely and
reliable manner. The system must be mon-
itored and controlled to identify and resolve
problems, to load/unload off-line volumes,
and to verify that site management jobs have
run correctly.

3.7.2.2 Tools Needed

An intelligent operations control center
spanning the complete storage system is
needed. Console displays need to show active
requests for each server, requests queued
for each server, volumes mounted for each
storage server, space summary information
(total number of volumes, number of empty
volumes, free space, etc.) for each storage
system in the hierarchy, resource status
(processors, storage controllers, storage
devices, communication links, volumes,
etc.), and a special display for resources
that are suspect or unavailable. Operator
commands should be available for each
server to restart or abort requests, and to
set resources available or unavailable.

Storage system log information is needed.
Messages that require action such as volume
mounts and error messages should go to a
display and/or hard copy console. All mes-
sages should be kept in a data base where
they can be easily retrieved and displayed.

Job summary information is needed.
Successful completion messages and error

31

messages for system jobs should be written
to a data base where they can be reviewed.
When an important system job fails, such as
backup of the bitfile descriptor tables, an
operator action message should be issued.

The operational means to recover from
temporary and permanent failures s
needed. This includes the ability to isolate
equipment which is failing or needs pre-
ventive maintenance (e.g. tape drives
needing cleaning) and the ability to switch
to backup equipment.

Automation of operations is needed to max-
imize the performance and reliability, and
to minimize the manual effort. This includes
automation of volume loading using a
physical volume repository and automation
of the decision-making process to minimize
human errors and human delays.

3.7.3 Systems Maintenance
3.7.3.1 Requirements

The systems maintenance functions strive to
maintain the performance, reliability, and
availability of the storage system, and the
integrity of the stored data. Performance is
supported by monitoring the individual
components and devices as well as the
overall storage for failing components or
out-of-balance conditions. The key to re-
liability and availability is the preservation
of critical system information in an envi-
ronment of possible hardware errors,
software errors and system crashes. This
information includes name server direc-
tories, bitfile descriptor tables, space limit
tables, physical volume tables, physical
device descriptor tables, logical-to-phys-
ical maps, logical volume tables, network
configuration tables and transaction logs.

3.7.3.2 Tools Needed

System programmers must have the ability
to quickly make changes in operating system
or storage system parameters that affect the
performance of the system. These tuning
parameters may be available at execution
and/or compile time. A “super-user” ca-
pability is needed so that a system pro-
grammer can execute all commands and have
access to all system data.

32

Tools to maintain the integrity of informa-
tion are needed. Programs must be available
to back-up bitfiles and volumes, and to
restore information from the backups.
Additional tools must be available for im -
portant, dynamic tables and data bases
where a backup quickly becomes out-of-
date. One technique is to keep a secondary
copy of dynamic information in addition to
the primary copy. If either the primary or
secondary fails, a new copy is immediately
made of the good copy. Another technique is
to keep a journal of the important transac-
tions. If a failure occurs, the journal is
applied to a backup to restore the informa-
tion to the current level. The recovery
programs needed to restore a backup to the
current level following a crash must be
available and well tested. Several persons
should be familiar with the procedures
required.

A checkpoint capability is needed to restore
critical storage system tables and data bases
to a consistent state if a crash occurs during
a transaction that makes multiple changes
(such as saving a bitfile which makes a new
bitfile descriptor, updates the directory
that points to the descriptor, and may update
the accounting data base as well). During
restart following an abnormal termination,
the checkpoints are used to either complete
or back-off requests so that the tables and
data bases will be consistent.

Verification programs are needed to check
the consistency of storage system informa-
tion. These programs should be designed to
run in parallel with the system so that
operation may continue while verification is
done.

Tools to help with problem determination
are needed. These include trace capabilities,
breakpoint capabilities, selected printing of
formatted and unformatted dumps of data and
programs, and dump analysis programs.
Tools are needed to modify and repair
storage system information.

3.7.4 Software Support
3.7.4.1 Requirements
For sites that develop new storage system

software, facilities must be available to
develop, maintain and test that software.

Mass Storage System Reference Model:

For customer sites, a test facility is re-
quired to verify that a new version satisfies
local security and other requirements be-
fore production use.

3.7.4.2 Tools Needed

An environment must be provided to test
software changes and enhancements without
disrupting the production use of the storage
system. The ability to run a test version and
the production version of the software si-
multaneously is necessary. The test soft-
ware may run on the same processors as the
production software or run on other pro-
cessors. It may share devices such as the
communication systems and the physical
storage systems, but it should have its own
tables, data bases, volumes, etc. Instead of
running a complete test version of the
storage system software, a test version of a
particular component (e.g., a bitfile
server) could be run using components of
the production system for the rest of the
system.

A regression testing capability should be
available so that a comprehensive set of
tests can be run at any time against the
production or test system to verify secu-
rity, integrity, and performance. Both the
running and checking of the regression tests
should be automated.

3.7.5 Hardware Support
3.7.5.1 Requirements

The hardware support functions are con-
cerned with the display, diagnosis and
correction of hardware problems, and the
configuration and installation of the
hardware. Hardware failures and the time
needed to repair failures must be minimized
especially for those failures that bring down
the storage system. It must be easy to re -
configure the system hardware, and install
and remove equipment.

3.7.5.2 Tools Needed

Programs to report hardware errors are
needed. These programs should be able to
give a detailed time history of hardware
errors, and show correlated summaries of
both temporary and permanent errors by

Version 4 (May, 1990)

error-type, device-type, specific device
and volume, over specified time intervals.
The ability to recognize the beginning of a
problem before it becomes permanent is
especially important when dealing with
storage devices/volumes where permanent
errors generally mean the loss of data.

Programs to exercise and diagnose all
hardware components of the storage system
are needed. These programs should be able to
analyze the errors and recommend the
corrective action. Storage devices with
mechanical parts, such as magnetic disk,
optical disk, magnetic tape, and especially
physical volume repositories, have a much
higher error rate than strictly electronic
hardware so diagnostic and exercise pro-
grams play an important role in storage
systems.

The system should be redundantly config-
ured so that components and paths can be
isolated, removed for repair and upgraded
with a minimal impact upon operation and
performance. Dynamic reconfiguration
capabilities, including the switching of the
production software to a backup processor,
should be available.

3.7.6 Administrative Control
3.7.6.1 Requirements

Administrative control covers the security,
accounting, and management policies of the
storage system. The security requirements
are to implement the security policies of the
site and to recognize if policy violations are
being attempted. The accounting require-
ments are to gather usage information, to
charge for use of resources, and to control
the resources. The management require-
ments are to present summary information
concerning the operation and performance of
the system that can be used to justify op-
erational and equipment expenditures and to
set high-level policy.

3.7.6.2 Tools Needed

The storage system must implement the
particular security policies of each site by
building the policies into the programs or
through the use of replaceable modules. In
general, the policies involve verification
that a user has access to the requested re -

33

sources of a server. Access or capability
information is stored with the resource and
checked against similar information in the
request. For some sites it is required that
classification and partition levels be asso-
ciated with bitfiles and requests, and that
access be controlled based on certain clas-
sification and partition rules. A security log
must be available that contains all security
violations (as determined by a site) and all
transactions above a specified security
classification level. A log of all transactions
should be kept to help diagnose anomalous
situations.

The storage system needs a resource-
charging mechanism. Charges may be in -
curred for the following resources and
services: amount of data stored, number of
bitfiles stored, data transferred, bitfiles
accessed, and any of the requests made to the
bitfile servers. These charges may vary for
the different bitfile servers, depending on
the level of performance and the class of
storage used. Requests made to the storage
system should contain an account code to
which the charge is to be made. An account
code can be stored in each bitfile descriptor
along with the storage space used, the length
of time stored, and a reference time for
accounting purposes. An accounting program
obtains the storage and bitfile charge in -
formation from the bitfile descriptors;
obtain the access, data transfer and request
charge information from the transaction
logs; accumulate and sort the charge in-
formation; and write the charge information
to an accounting file. Another accounting
program has the resource charging rates
and calculates the bills. Since the account
codes often change, an automatic means of
updating the bitfile descriptors is needed.
One approach is to have a central data base
of accounts from which an accounting pro-
gram can update the bitfile descriptors. This
data base can also be used to validate users
and to show what resources they can use.

The summary information used by man-
agement to set high-level policy needs to be
extracted from all the other site manage-
ment reports and data bases, and presented
in a useful (usually graphic) manner. A
number of vendor products are available
that can be used to extract, process and
display information.

34

Mass Storage System Reference Model:

4. References

Allen, I. D. (1983). The role of intelligent
peripheral interfaces in systems archi-
tecture. Proc. Nat. Computer Conf. pp. 62 3 -
630.

Almes, G. T., Black, P., Lazowska, D., and
Noe, D. (1985). The Eden system: a tech-
nical review. IEEE Trans. on Software
Engineering SE-11. (1), 43-59.

Birrell, A.D., Levin, R., Neddham, M., and
Schoeder D. (1982). Grapevine: an exercise
in distributed computing. Comm. ACM, Vol
25, No. 4, 260-274.

Booch, G. (1986). Object-oriented devel-
opment, IEEE Trans. on Software
Engineering, SE-12. (2), 211-221.

Brownbridge, D. R., Marshall, L. F., and
Randell, B. (1982). The newcastle con-
nection. Software Practice and Experience
12, 1147-1162.

Coleman, S. and Watson, R. (1984). Storage
in the LLNL Octopus network: an overview
and reflections. Digest of Papers, Sixth IEEE
Symposium on Mass Storage Systems, Vail,
Colorado, June 1984.

Coleman, S. (1988). Physical volume
repository. Digest of Papers, Ninth IEEE
Symposium on Mass Storage Systems,
Monterey, California, November 1988.

Collins, B., Devaney, M., and Wilbanks, E.
(1982). A network file storage system.
Digest of Papers, Fifth IEEE Symposium on
Mass Storage Systems, Boulder, Colorado,
October 1982.

Collins, B. (1988). Mass storage system
reference model system management. Digest
of Papers, Ninth IEEE Symposium on Mass
Storage Systems, Monterey, California,
November 1988.

Davis, J. D. (1982). Mass storage systems:
a current analysis. Digest of Papers, Fifth

IEEE Symposium on Mass Storage Systems,
Boulder, Colorado, October 1982.

DIS8571. Information processing systems
open systems interconnection, file transfer,
access, and management (in four parts,
draft international standard 1SO/DIS8571),
distributed by Omicon Information Services.

Donnelley, J. E., and Fletcher, J. G
(1980). Resource access control in a
network operating system. Proc. ACM
Pacific 80 Conf.

Enslow, P. H., Jr. (1978). What is a
“distributed” data processing system?
Computer, Vol 11, No. 1, Jan, 13-21.

Falcone, Joseph R. (1988). The bitfile
server in the IEEE reference model for mass
storage systems. Digest of Papers, Ninth
IEEE Symposium on Mass Storage Systems,
Monterey, California, November 1988.

Fletcher, J., G. (1975). Computer storage
structure and utilization at a large scien-
tific laboratory. Proc. IEEE 63 (8), 1104-
1113.

Foglesong, Joy, et. al. (1990). The
Livermore distributed storage system:
implementation and experiences. Digest of
Papers, Tenth IEEE Symposium on Mass
Storage Systems, Monterey, California, May
1990.

Gary, Mark (1990). Overcoming Unix
kernel deficiencies in a portable, dis-
tributed storage system. Digest of Papers,
Tenth IEEE Symposium on Mass Storage
Systems, Monterey, California, May 1990.

Gentile, R. B., and Lucas, J. R. (1971). The
TABLON mass storage network. Proc. Spring
Joint Computer Conf,, pp. 345-356.

Grossman, C.P.(1989). Evolution of the
DASD storage control, [IBM Systems
Journal, Vol.28, No.2, 1989.

Version 4 (May, 1990)

Harris, J. P., Rhode, R. S., and Arter, N. K.
(1975). The IBM 3850 mass storage sys-
tem: design aspects. Proc. IEEE 63 (8),
1171-1179.

Hogan, Carole, et. al. (1990). The
Livermore distributed storage system: re -
quirements and overview. Digest of Papers,
Tenth IEEE Symposium on Mass Storage
Systems, Monterey, California, May 1990.

Howie, H. R., Jr. and Salbu, E. (1975).
Mass storage implementation approaches: a
spectrum. AFIPS The Information
Technology Series, Memory and Storage
Technology.

Johnson, C. (1975). IBM 3850 mass
storage system. AFIPS Conf. Proc. 44.

Jones, A. K. (1979). The object model: a
conceptual tool for structuring software.
“Operating Systems”. Springer-Verlag,
Berlin.

Kitts, D. (1988). Bitfile mover. Digest of
Papers, Ninth |EEE Symposium on Mass
Storage Systems, Monterey, California,
November 1988.

Kuehler, J. D. and Kerby, H. R. (1966). A
photographic mass storage system. AFIPS
FJCC Proc. 29, 735-742.

Lantz, K. A., Edighoffer, J. L., and Hitson, B.
L. (1985). Toward a Universal Directory
Service. Report No. STAN-C5-85-1086,
Stanford University.

Leach, P. J., et al (1982). UIDs as internal
names in a distributed file system. Proc.
Symposium on Principles of Dist.
Computing, Ottawa, 34-41.

LeLann, G. (1981). Motivation, objectives,
and characteristics of distributed systems.
“Distributed system-architecture and im -
plementation”. Springer-Verlag, Berlin,
1-9.

Mclarty, T., Collins, B. and Devaney, M.
(1984). A functional view of the Los Alamos
central file system. Digest of Papers, Sixth
IEEE Symposium on Mass Storage Systems,
Vail, Colorado, June 1984.

35

Miller, S. W. and Collins, B. (1985).
Toward a reference model for mass storage
systems. Computer, Vol. 18, No. 7, July, 9-
22.

Miller, S. W. (1988a). “A Reference Model
for Mass Storage Systems”, Advances in
Computers, Volume 27, Academic Press.

Miller, S.W. (1988b). Mass storage ref-
erence model, special topics. Digest of
Papers, Ninth IEEE Symposium on Mass
Storage Systems, Monterey, California,
November 1988.

Mullender, J., and Tannenbaum, A. S.
(1984). Protection and resource control in
distributed operating systems. Computer
Networks 8, 421-432.

Nelson, M., Kitts, D. L., Merrill, J. H., and
Harano, G. (1987). The NCAR mass storage
system. Digest of Papers, Eighth |EEE
Symposium on Mass Storage Systems,
Tucson, Arizona, May 1987, pp. 12-20.

O'Lear, B. T. and Choy, J. H. (1982).
Software considerations in mass storage
systems. Computer 15 (7), 36-44.

Penny, S. J. and Alston-Garnjost, M.
(1970). Design of a very large storage
system. Proc. Fall Joint Computer Conf. pp.
45-51.

Sandberg, R. (1985). Design and imple-
mentation of the SUN network file system.
Proc. Tenth Usenix Conference, 119-130.

Savage, P. (1985). Proposed guidelines for
an automated cartridge repository.
Computer, Vol 18, No. 7, July, 49-58.

Savage, P. (1988). Storage server as
physical box. Digest of Papers, Ninth IEEE
Symposium on Mass Storage Systems,
Monterey, California, November 1988.

Svobodova, L. (1984). File servers for
network-based distributed systems.
Computing Surveys, 16, (4), 354-398.

Watson, R. W. (1980). Network archi-
tecture design for a back-end storage
network. Computer, Vol 13, No. 2, Feb, 32-
48.

36

Watson, R. W. (1981a). Distributed system
architecture model. Distributed Systems—
Architecture and Implementation,
Springer-Verlag, Berlin, 10-43.

Watson, R. W. (1981b). Identifiers
(naming) in distributed systems.
Distributed Systems—Architecture and
Implementation, Springer-Verlag, Berlin,
191-210.

Watson, R. W. (1984). Requirements and
overview of the LINCS distributed operating
system architecture. Lawrence Livermore
National Laboratory, Preprint UCRL-
90906.

Watson, R. W. (1987). Tutorial notes,
Eighth IEEE Symposium on Mass Storage
Systems, Tucson, Arizona, May 1987.

Watson, R. W. (1988). The Architecture of
Future Operating Systems, UCRL Preprint
99896, presented at the Cray Users Group
Meeting, Tokyo, Japan - September 1988.

Wildman, M. (1975). Terabit memory
system: design history. Proc. IEEE 63 (8),
1160-1165.

Mass Storage System Reference Model:

Version 4 (May, 1990)

37

5. Glossary

Authentication Request/Reply
The command to test the access rights of
the requestor to a particular service.

Bitfile
A collection of data that can be created
on, read from, written into, and deleted
from a storage system. These data are
treated as a string of bits without any
particular structure.

Bitfile Authenticator
The process that checks the access
rights of a requestor for service.

Bitfile Descriptor
The bitfile attribute information that is
stored as an entry in the bitfile de-
scriptor table.

Bitfile Descriptor Manager
The process that manages the bitfile
descriptor table.

Bitfile Descriptor Table
The data store where the bitfile de-
scriptors are stored.

Bitfile 1D
A machine-oriented, globally unique
identifier of a bitfile.

Bitfile Mover
The processes, including the high-level
protocols, that control the movement of
bitfiles.

Bitfile Server
The set of processes that control the
creation, destruction, and access to the
many bitfiles under its control.

Bitfile Server Request Processor
The portion of the bitfile server that
acts upon requests and controls the
request/reply communications with
internal modules as well as other
processes and servers.

Bitfile Transfer
The high-speed movement of bitfile data
blocks.

Client Request/Reply
The list of permitted commands from a
client to a server and the resulting
responses.

Create
The bitfile client request to form a
bitfile descriptor record in the bitfile
descriptor table. The bitfile attributes
to be contained in the bitfile descriptor
are specified in the request.

Destroy
The bitfile client request to remove a
bitfile descriptor from the bitfile de-
scriptor table. The space allocated to
the bitfile is deallocated and, if the
media can be rewritten, returned to the
free space list.

Lock
The bitfile client request to establish a
lock for a bitfile in preparation for one
or more stores or retrieves of the bit-
file.

Modify
The bitfile client request to change one
or more attributes of a bitfile as con-
tained in the bitfile descriptor table.

Monitor Information
Status information from storage system
modules used by the site manager to
assist in the management and control of
the storage system.

Move Command
The request to move a bitfile between
specified devices.

Name Server
The server that converts between the
human-oriented name for a bitfile and
the machine-oriented name for the
same bitfile.

38

Physical Volume
A bounded unit of storage media that is
used to store bitfiles.

Physical Volume Move
The physical movement of a volume

between the volume repository and a

storage server or its return.

Physical Volume Repository
The place where physical volumes are
stored when they are not at a read/
write station.

Principle ID
Identification of the agent requesting
service from the bitfile server.

PVR-Dismount
A request sent to the physical volume
repository to remove a physical volume
from a drive.

PVR-Mount
A physical volume ID sent to the
physical volume repository with the
request to mount it on a particular
storage device in the storage server.

Query
The bitfile client request to obtain in -
formation about a bitfile or its at-
tributes from the bitfile descriptor
table.

Retrieve

The bitfile client request to move a
bitfile or a segment of a bitfile from a

storage server to the bitfile client. If
only a segment is to be moved, then the
internal starting bit address and the bit
string length must be specified.

Site Control
Commands from the site manager for
initial set up, operations, and man-
agement of the storage system.

SS-Allocate
The request to a storage server to make
logical space available for Dbitfile
storage.

Mass Storage System Reference Model:

SS-Deallocate
The request to a storage server to
remove a bitfile from physical storage
and return the space to the free space
list.

SS-Retrieve
The request from a bitfile server to
move a bitfile from a storage server to
a bitfile client.

SS-Store
The request from a bitfile server to
move a bitfile from bitfile client buffer
to storage server media.

Status
The bitfile client request for the status
of the bitfile server or of a previous
request made by the bitfile client.

Store

The client request to move a bitfile data
block from the bitfile client to a bitfile
server medium. This request may in -
clude the ability to append a segment at
the end of an existing bitfile or to up-
date a physically specified segment of
an existing bitfile.

Unlock
The client request to release the lock
held on a bitfile.

